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Abstract. We present a method to approximate the solution mapping of parametric constrained
optimization problems. The approximation, which is of the spectral finite element type, is repre-
sented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving
an appropriate finite-dimensional constrained optimization problem. We show that, under certain
conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the
polynomial approximation and has an objective function with bounded level sets. In addition, the
solutions of the finite dimensional problems converge for an increasing degree of the polynomials
considered, provided that the solutions exhibit a sufficiently large and uniform degree of smooth-
ness. Our approach solves, in the case of optimization problems with uncertain parameters, the most
computationally intensive part of stochastic finite-element approaches. We demonstrate that our
framework is applicable to parametric eigenvalue problems. Numerical results in one-dimensional
cases indicate that our method is, for those examples, superior in both accuracy and speed to black-
box approaches.
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1. Introduction. This paper is concerned with the application of spectral finite-
element methods (SFEMs) to the determination of the parametric variation of the
solution of parametric constrained optimization. Parametric problems appear in a
variety of circumstances, and, relevant to this work, when the parameters of the
problem are uncertain [15]. Applications of parametric problems include elastoplas-
ticity [1], radioactive waste disposal [17], elasticity problems [15], disease transmission
[3], and nuclear reactor safety assessment [22].

In parametric uncertainty analysis of nonlinear equations, the problem is to char-
acterize the dependence with respect to parameters of the solution of a nonlinear
equation F (x, ω) = 0, x ∈ Rn, ω ∈ Ω ⊂ Rm, F : Rn × Rm → Rn. In addition,
the function F (·, ·) is smooth in both its arguments. Under the assumption of non
singularity of ∇xF (x, ω) in a sufficiently large open set that contains (x0, ω0), one can
determine a smooth mapping x(ω) that satisfies x(ω0) = x0 and F (x(ω), ω) = 0. The
essence of parametric uncertainty analysis is to characterize the mapping x(ω) either
by approximating it to an acceptable degree or by computing some of its integral
characteristics, such as averages with appropriate weighting functions.

Perhaps the most widespread approach in carrying out this endeavor is the use
of some form of the Monte Carlo method [19, 28]. In this approach, the parameter ω

is interpreted as a random variable with an appropriate probability density function,
and either the probability density function of x(ω) is approximated or computed,
or appropriate averages Eω [g(x(ω))] are computed for suitable expressions of the
multidimensional merit function g. Here Eω is the expectation operator with respect
with the probability density function of ω. In the Monte Carlo approach, values for

∗Argonne National Laboratory, Mathematics and Computer Science Division, 9700 S Cass Avenue,
Argonne IL, 60439, USA, email anitescu@mcs.anl.gov

1



2 M. Anitescu

x(ω) are produced for an appropriate set of sample points ωi, in which case for each
sample point the original nonlinear problem must be solved for its argument x.

1.1. SFEM and Stochastic Finite Element Approaches. Recently, there
has been substantial interest in carrying out the analytical computation as far as
possible in characterizing the mapping x(ω). The component of this endeavor that
is relevant to this work is the spectral stochastic finite-element method [15, 14]. In
this method, the mapping x(ω) is approximated by a Fourier-type expansion with
respect to a basis of polynomials P0(ω), P1(ω), . . . , PMK

(ω) that are orthogonal
with respect to the probability density function of ω, that is Eω (Pi (ω)Pj (ω)) =
δij , 0 ≤ i, j ≤ MK . For x0, x1 . . . xMK

∈ Rn, one defines the SFEM approximation

x̃(ω) = x̃(ω; x0, x1, . . . xMK
) =

MK∑

i=0

xiPi(ω), and its vector coefficients x∗
0, x

∗
1 . . . x∗

MK

are determined from the Galerkin projection conditions

Eω (F (x̃(ω), ω)Pk(ω)) = 0n, k = 0, 1, . . . , MK . (1.1)

This procedure results in a nonlinear system of equations that is MK +1 times larger
than the original nonlinear system of equations for a given choice of the parameter
ω. The advantage over the Monte Carlo method is that once this nonlinear system of
equations is solved, the original nonlinear problem no longer needs to be solved.

In the spectral stochastic finite-element method one uses SFEM to generate an
approximation of the mapping x(ω), and its probability density function is evaluated
by, for example, a Monte Carlo method using the probability density function of ω and

the SFEM approximation x̃(ω) =
MK∑

k=0

x∗
kPk(ω), without the need to solve any further

system of nonlinear equations. Because the polynomials are used as the generators
of the space over which approximation is carried out and the parameter ω has a
stochastic interpretation the expansion defined by this approximation is called the
chaos polynomial expansion [14].

We note that solving for the coefficients of the SFEM approximation in (1.1) is the
main topic of this work in the case where F (·, ·) is the function defining the first-order
conditions of an optimization problem and is the main computational endeavor in
stochastic finite-element approaches [15, 14]. Compared to stochastic finite-element
approaches, our work does not cover the determination of the probability density
function of x̃(ω) from the probability density function of the variable ω [15]. Note,
however, that such calculations would not involve the model function F (·, ·) and gen-
erally have far smaller computational complexity compared to the one of obtaining
x̃(ω).

Of course, the success of this method resides in the ability to suitably choose
the set of polynomials Pi so that the residual decreases rapidly for relatively small
values of MK , before the size of the Galerkin projected problem explodes, a situation
that occurs if one considers in the approximating set all the polynomials of degree
up to K and if m is large. Nonetheless, for cases where n is huge (as are the cases
originating in the discretization of partial differential equations) and m is relatively
moderate, the SFEM has shown substantially more efficiency compared to the Monte
Carlo approach, even when all polynomials of degree up to K were considered as
generators of the approximating subspace [1]. In this work, we choose as the basis for
the approximation the set of all polynomials of degree up to K, and we will defer the
investigation of choosing a smaller subset to future research.
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Spectral finite element approaches in the context of uncertainty quantification
have been applied primarily to the problem of parametric nonlinear equations [15, 14,
1, 7]. The object of this paper is to analyze the properties of SFEM and its extensions
when the original problem is a constrained optimization problem.

To demonstrate several of the points we make, as well as to validate our theoretical
findings, we will conduct a series of numerical experiments for problems with one-
dimensional parameter spaces, some of which have solutions that are not smooth.
For such problems there may exist more suitable methods such as mesh-based finite-
element methods with mesh adaptation. We point out, however, that such approaches
are impractical for high-dimensional problems [24] which are the goal of our approach
in the near future. The aim of the examples with nonsmooth solutions is to compare
the performance of the Galerkin spectral finite element-approach with collocation,
“black-box” approaches, and to verify the result of Theorem 3.9.

2. Background on Spectral Methods. In this section, we use the framework
from [10]. The choice of orthogonal polynomials is based on the scalar product

〈g, h〉W =

∫

Ω

W (ω)g(ω)h(ω)dω,

where g, h are continuous functions from R
m to R. Here Ω ∈ R

m is a compact set
with a nonempty interior, and W (ω) is a weight function that satisfies the following.

1. W (ω) ≥ 0, ∀ω ∈ Ω.
2. Any multivariable polynomial function P (ω) is integrable, that is,

∫

Ω

W (ω)|P (ω)|dω < ∞.

We define the semi norm

||g||W =
√

〈g, g〉W
on the space of continuous functions. If, in addition, ||g||W = 0 ⇒ g = 0, then ||·||W
is a norm. We will concern ourselves only with this case, in which we denote by
L2

W = L2
W (Ω) the completion of the space of continuous functions whose norm ||·||W

is finite.
With respect to the scalar product 〈·, ·〉W , we can orthonormalize the set of poly-

nomials in the variable ω. We obtain the orthogonal polynomials Pi(ω) that satisfy
the following.

• 〈Pi, Pj〉W = δij , 0 ≤ i, j. By convention, we always take P0 to be the constant
polynomial.

• The set {Pi}i=0,1,2,... forms the basis of the complete space L2
W .

• If k1 ≤ k2, then deg (Pk1
) ≤ deg (Pk2

). To simplify our notation, we introduce
the definition

MK = max{k|deg(Pk) ≤ K}.

We define L2
p,W = L2

W ⊗ L2
W ⊗ . . . L2

W
︸ ︷︷ ︸

p

. We use the notation L2
W = L2

p,W when the

value of p can be inferred from the context. The Fourier coefficients of a function
f : Ω → R

p are defined as

ck(f) =

∫

Ω

fPk(ω)W (ω)dω ∈ R
p, f ∈ L2

W , k = 0, 1, . . . ,
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and they satisfy Bessel’s identity [10]

f ∈ L2
W ⇒

∞∑

k=0

||ck(f)||2 =

∫

Ω

||f(ω)||2 = ||f ||2W . (2.1)

The projection of a function f ∈ L2
W onto the space of the polynomials of degree at

most K can be calculated as [10]

ΠK
W (f) =

MK∑

k=0

ck(f)Pk(ω).

The most common type multidimensional weight function is probably the one of the
separable type, that is, W (ω1, ω2, . . . , ωm) =

∏m
i=1 wi(ωi). In this case, the orthogonal

polynomials can be chosen to be products of orthogonal polynomials in each individual
variable [6, 10]. We refer to such orthogonal polynomials as tensor products. The
case Ω = [−1, 1]m, with wi(x) = 1

2 , i = 1, 2, . . . , m is the one of tensor Legendre
polynomials, whereas the one with wi(x) = 1

π
√

1−x2
, i = 1, 2, . . . , m is the one of

Chebyshev polynomials [6].
Following the multidimensional Jackson theorem [13, Theorem 2], there exists a

parameter C that depends only on the function f such that

Dαf(ω) are Lipschitz ∀α ∈ N
m, ||α||1 = q − 1 =⇒

∣
∣
∣
∣f − ΠK

W (f)
∣
∣
∣
∣
W

≤ C
1

Kq
. (2.2)

Here, we denote by Dα the derivative of multiindex α = (α1, α2, . . . , αm) ∈ N
m,

Dα(f) =
∂

Pm
i=1 αif

∂ωα1

1 ∂ωα1

2 . . . ∂ωαm
m

.

If m = 1, then the polynomial functions are polynomials of only one variable, and we
can obtain an orthonormal family that satisfies deg Pk = k, and MK = K + 1.

In addition, a reciprocal of (2.2) holds in certain circumstances. There exists a
parameter t that depends only on W (x) and on m such that

max

{

||f ||∞ ,

∣
∣
∣
∣

∣
∣
∣
∣

∂f

∂ω1

∣
∣
∣
∣

∣
∣
∣
∣
∞

,

∣
∣
∣
∣

∣
∣
∣
∣

∂f

∂ω2

∣
∣
∣
∣

∣
∣
∣
∣
∞

, . . . ,

∣
∣
∣
∣

∣
∣
∣
∣

∂f

∂ωm

∣
∣
∣
∣

∣
∣
∣
∣
∞

}

≤ CS

∞∑

k=0

||ck(f)|| deg(Pk)t < ∞.

(2.3)
Indeed, for tensor Legendre and Chebyshev polynomials such a conclusion follows by
techniques described in [6] from choosing an appropriate t, computing the Sobolev
norm of weak derivatives of f whose projection can be explicitly computed for either
case followed by an application of Sobolev’s theorem.

Finally, for some orthogonal polynomial families, the following holds.

ΛK = sup
ω∈Ω

√
√
√
√

MK∑

k=0

(Pk(ω))
2 ≤ CΛMK

d, (2.4)

where d and CΛ are parameters, depending on m, Ω, but not on K. For tensor-
product Chebyshev polynomials, and Ω = [−1, 1]m, it is immediate that CΛ = 1 and
d = m

2 . For tensor-product Legendre polynomials, one can choose d = m, following
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the properties of separable weight functions [10, Proposition 7.1.5] as well as the
asymptotic properties of ΛK for the Legendre case when m = 1 [23, Lemma 21].

In addition, for the case where
∫

Ω

W (ω)d(ω) = 1,

we can interpret W (ω) as a probability density function (this case can be achieved
for any weight function after rescaling with a constant). In that case, we may refer
to ω as a random variable, and it is the case we treat in this work.

Notations The expectation of a function f(ω) of the random variable is

Eω [f(ω)] =

∫

Ω

f(ω)W (ω)dω
∆
= 〈f(ω)〉 .

The last notation is useful to compact mathematical formulas. Note that the symbol
of the scalar product includes a comma (< ·, · >). We use ||u|| to denote the Euclidean
norm of a vector u ∈ R

p. For f : Ω → R
p, the quantity ||f ||W = ||f(ω)||W is the L2

W

norm, defined in (2.1), whereas ||f(ω)||∞ = ||||f(ω)||||∞.
When proving an inequality or equality, we will display on top of the respective

sign the equation that justifies it. For example
(2.1)
= is an identity justified by Bessel’s

identity (2.1).

3. Constrained Optimization Problems. Consider the following constrained
optimization (O) problem

(O)
x̃∗(ω) = arg minx f(x, ω)

subject to g(x, ω) = 0p.

Here, the function g : Rn × R
m → R

p. We are interested in approximating the
mapping x(ω), where ω ∈ Ω.

3.1. SFEM formulations. An SFEM formulation can be obtained by writing
the optimality conditions for the problem (O) after we introduce the Lagrange mul-
tiplier mapping λ(ω) : Ω → R

m, followed by the procedure outlined in [15]. The
optimality conditions result in

∇xf(x(ω), ω) + λT (ω)∇xg(x(ω), ω) = 0n

g(x(ω), ω) = 0p.
(3.1)

We introduce the SFEM parametrization of the approximation

x̃K(ω) =

MK∑

k=0

xkPk(ω), λ̃K(ω) =

MK∑

k=0

λkPk(ω).

Here, we have that the coefficients of the expansion satisfy xk ∈ R
n and λk ∈ R

p,
k = 0, 1, 2, . . .. The procedure outlined in [15] results in the following system of
nonlinear equations
〈

Pk(ω)

(

∇xf(x̃K(ω), ω) +
(

λ̃K(ω)
)T

∇xg(x̃K(ω), ω)

)〉

= 0n,
〈
Pk(ω)g(x̃K(ω), ω)

〉
= 0p,






0 ≤ k ≤ MK .

(3.2)
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We could try to solve the equations (3.2) in order to obtain the SFEM approxi-
mation. Once we do that, however, we face the problem of determining whether the
resulting system of nonlinear equations has a solution, and how we can determine it.
One could imagine that certain results can be proved under the assumption that the
solution of (O), x̃∗(ω), has sufficiently small variation. A result of this type will be
shown in Subsection 3.4 though for weaker assumptions than the small variation of
the solution. But more important from a practical perspective, we started with an
optimization structure to our original problem (O) and, at first sight, the equations
(3.2) do not have an optimization problem structure. This situation restricts the type
of algorithms that we could use to solve the problem. Nonetheless, this difficulty
is only superficial, as shown by the following theorem, which relates the solution of
the nonlinear equations (3.2) to the solution of the following stochastic optimization
problem:

(SO(K))
min{xk}k=0,1,...,MK

〈f(x̃(ω), ω)〉
〈g(x̃(ω), ω)Pk(ω)〉 = 0p, k = 0, 1, . . . , MK .

Theorem 3.1. Consider the coefficients x̂0, x̂1, . . . , x̂MK
that are a solution of

the minimization problem (SO(K)) and assume that they satisfy the KKT conditions

with the Lagrange multipliers λ̂0, λ̂1, . . . , λ̂MK
. With these coefficients and multipliers

we define the functions

x̂K(ω) =
∑

k=0,1,...,MK

x̂kPk(ω), λ̂K(ω) =
∑

k=0,1,...,MK

λ̂kPk(ω).

Then, x̂(ω) and λ̂(ω) satisfy the equations (3.2), assuming that f and g have Lipschitz
first derivatives.

Proof The optimality conditions for (SO(K)), that are satisfied by the solution,
since the constraint qualifications holds [21], result, for a fixed k ∈ {0, 1, . . . , MK}, in

0n = ∇xk

〈
f(x̂K(ω), ω)

〉
+ ∇xk

∑

k′=0,1,...,MK

λ̂T
k′

〈
g(x̂K(ω), ω)Pk′(ω)

〉

= ∇xk

〈
f(x̂K(ω), ω)

〉
+ ∇xk

〈


∑

k′=0,1,...,MK

Pk′ (ω)λ̂k′



 g(x̂K(ω), ω)

〉

= ∇xk

〈

f(x̂K(ω), ω) +
(

λ̂K(ω)
)T

g(x̂K(ω), ω)

〉

=

〈

Pk(ω)

(

∇xf(x̂K(ω), ω) +
(

λ̂K(ω)
)T

∇xg(x̂K(ω), ω)

)〉

,

where we have used the fact that the expectation operator commutes with multipli-
cation with a parameter. We have also used the fact that f and g have Lipschitz
continuous derivatives, which allows us to interchange the derivative and the expec-
tation operator.

The last equation represents the first set of equations in (3.2) for x̂K(ω) and

λ̂K(ω). Since the second set of equations must be satisfied from the feasibility condi-
tions, the proof of the theorem is complete. 2

The preceding theorem represents the main practical advance brought by this
work, because it provides an alternative way of formulating the spectral finite-element
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approximation when the original problem has an optimization structure. The compu-
tational advantage of the formulation (SO(K)) over the nonlinear equation formulation
(3.2) is that it preserves the optimization structure and allows one to use optimization
software that is guaranteed to obtain a solution of (3.2) under milder conditions than
solving the nonlinear equation directly.

3.2. Assumptions. Our goal is to show that, under certain assumptions, a
solution of (SO(K)) approximates a solution of (O). A key step is to ensure that
the problem (SO(K)) has a feasible point whose Jacobian of the constraints is well
conditioned in the neighborhood of x̃∗(ω), the solution of the problem (O). As we will
later see, this result, in addition to a bounded level set condition, will be the key to
ensuring that (SO(K)) is feasible and, in turn, that (SO(K)) has a solution.

An important result is the following.

Theorem 3.2 (Kantorovich’s theorem for nonsquare systems of equations, [8,
27]). Assume that f : X → Y is defined and differentiable on a ball
B = {x| ||x − x0|| ≤ r}, and assume that its derivative F (x) satisfies the Lipschitz
condition on B:

||F (x) − F (z)|| ≤ L ||x − z|| , ∀x, z ∈ B.

Here, X and Y are Banach spaces, F (x) maps X onto Y , and the following estimate
holds:

||F (x0)
∗y|| ≥ µ ||y|| for any y ∈ Y (3.3)

with µ > 0 (the star denotes conjugation). Introduce the function H(t) =
∑∞

k=1 t2
k

,

and suppose that h = Lµ2||F (x0)||
2 < 1, ρ = 2H(t)

Lµ
≤ r. Then the equation F (x) = 0

has a solution that satisfies ||x − x0|| ≤ ρ. Note This result is stated slightly
differently in [27], where (3.3) is required for all x ∈ B. However, the purpose in
that reference is to prove a rate of convergence result for an iterative process. From
Graves’ theorem [8, Theorem 1.2] the Theorem 3.2 follows as stated. Note that for
Kantorovich’s Theorem for square systems [27](where the spaces X and Y are the
same), the condition corresponding to (3.3) is also stated only at x0.

We can immediately see that the nature of the constraints in (SO(K)) is quite
a bit different from the one of (O). It is clear how to assume well-posedness of the
constraints at the solution x̃∗(ω).

[A1] σmin (∇xg(x̃∗(ω), ω)) ≥ σm, ∀ω ∈ Ω.

Here σmin is the smallest singular value of a given matrix. It is not clear how to
immediately translate [A1] into a proof of well-conditioning for the constraints of
(SO(K)):

〈g(x̃(ω), ω)Pk(ω)〉 = 0p, k = 0, 1, 2 . . . , MK ,

which we investigate in this section. We have that ∇xi

〈
g(x̃K(ω), ω)Pk

〉
are the blocks

of the Jacobian matrix at an SFEM approximation x̃K(ω). Since g(x, ω) has Lips-
chitz continuous derivatives from Assumption [A3] below and Ω is compact, we can
interchange the average and the differentiation and use the chain rule to obtain that
the blocks are

〈
∇xg(x̃k(ω), ω)PiPk

〉
.
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Therefore, for fixed K, the Jacobian has dimension p(MK + 1) × n(MK + 1).

JK(x̃K) =








J00(x̃
K) J01(x̃

K) · · · J0MK
(x̃K)

J10(x̃
K) J11(x̃

K) · · · J1MK
(x̃K)

...
...

...
...

JMK0(x̃
K) JMK1(x̃

K) · · · JMKMK
(x̃K)








,

where

Jij(x̃
K) =

〈
∇xg(x̃k(ω), ω)Pi(ω)Pj(ω)

〉
∈ R

p×n, i, j = 0, 1, . . . , MK .

We want to show that the matrix JK is uniformly well-conditioned with respect
to K, for K sufficiently large, at x̃∗,K = ΠK

W (x̃∗). In that sense, we need to prove
that its smallest singular value is bounded below. To obtain such a bound, we need
a more workable expression for the minimum singular value. The minimum singular
value of a matrix B of dimension p × n is the following inf − sup condition [5]:

σmin = inf
λ∈Rp

sup
u∈Rn

λT Bu

||λ|| ||u|| = inf
λ∈Rp,||λ||=1

sup
u∈Rn,||u||=1

λT Bu.

To prove our results, we need to invoke several assumptions. One of the assump-
tions will involve a statement about functions that have bounded level sets. We say
that a function χ : R → R has bounded level sets if the sets Lχ

M = χ−1 ((−∞, M ])
are bounded for any M ∈ R.

• [A2] Uniformly bounded level sets assumption: There exist a function χ(·)
that is convex and nondecreasing, and that has bounded level sets and a
parameter γ > 0 such that

χ (||x||γ) ≤ f(x, ω), ∀ω ∈ Ω. (3.4)

• [A3] Smoothness assumption: The functions f(x, ω) and g(x, ω) have Lips-
chitz continuous first derivatives in both variables. In addition, ∇xg(x, ω) is
uniformly Lipschitz with respect to x, that is there exists L > 0 such that
||∇xg(x1, ω) −∇xg(x2, ω)|| ≤ L(ω) (||x1 − x2||) ≤ L ||x1 − x2||, ∀x1, x2 ∈
R

n. The last inequality follows from the fact that Ω is a compact set.
• [A4] The solution of the problem (O), x̃∗(ω) is Lipschitz continuous.
• [A5] cCG < 1

4 , where

CG = sup
ω∈Ω

||∇xg(x̃∗(ω), ω)|| ,

c = sup
∀K,Q∈N

∣
∣
∣
∣
(
J̄K,Q(x̃∗)

)∣
∣
∣
∣ .

Here,

J̄K,Q(x̃) =








J̄0,K+1(x̃) J̄0,K+2(x̃) · · · J̄0,K+Q(x̃)
J̄1,K+1(x̃) J̄1,K+2(x̃) · · · J̄1,K+Q(x̃)

...
...

...
...

J̄K,K+1(x̃) J̄K,K+2(x̃) · · · J̄K,K+Q(x̃)








, (3.5)
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where

J̄i,j(x̃) =
〈
G†(ω)Pi(ω)Pj(ω)

〉
∈ R

n×p, i, j = 0, 1, 2, . . . ,

and G†(ω) ∈ R
n×p (the pseudoinverse) is, following Assumptions [A3] and

[A4] a matrix-valued Lipschitz mapping such that

∇xg(x̃∗(ω), ω)G†(ω) = Ip,
∣
∣
∣
∣G†(ω)

∣
∣
∣
∣ ≤ 1

σm

, ∀ω ∈ Ω. (3.6)

The pseudoinverse exists following Assumption [A1].

3.3. Discussion of the Assumptions. We now discuss the restrictions im-
posed by and implications of the assumptions [A1]–[A5].

3.3.1. Existence and Properties of the Optimal Map x̃∗(ω). Assumptions
[A2] and [A3], which make no mention of the solution map x̃∗(ω), are key ingredients
for the existence of such a solution map. For the purpose of this discussion, assume
that g(x, ω) is feasible for any ω. Specifically assume that there exists DΩ > 0 such
that for any ω there exists x̂(ω) such that ||x̂(ω)|| ≤ DΩ and g(x̂(ω), ω) = 0. It follows
that

f(x̂(ω), ω) ≤ max
||x||≤DΩ,ω∈Ω

f(x, ω)
∆
= MDΩ

,

where the maximum can be taken because the sphere of radius DΩ is compact in R
n,

Ω is compact, and, from Assumption [A3], f(x, ω) is continuous. Define now the set

X̂MDΩ
= {x|∃ω ∈ Ω, f(x, ω) ≤ MDΩ

} ,

which, following Assumption [A2], is included in a level set of χ and thus must be a
compact set. Therefore, for any ω the problem

min
x∈X̂MDΩ

f(x, ω) subject to g(x, ω)

is feasible, and thus, since it represents minimization of a continuous function over a
compact set, it also has at least one solution, which we denote by x̃∗(ω), which must
also be a solution of the original problem (O).

Therefore, a mapping x̃∗(ω) does exist, under [A2], [A3] and the uniform feasibility
assumption. In the case where g(x, ω) = g(x) (that is, g does not depend on Ω, such as
is the case in the eigenvalue problem, where g(x, ω) = xT x−1), the uniform feasibility
assumption, is immediately satisfied so that a mapping x̃∗(ω) does exist.

In addition, if f, g are smooth (infinitely differentiable) in both arguments and if
[A1] holds for x̃∗(ω), then for any ω there exists a unique Lagrange multiplier λ̃∗(ω)
such that ∇xL(x̃∗(ω), λ̃∗(ω), ω) = 0 [4, 21]. Here L(x, λ, ω) = f(x, ω) + λT g(x, ω)
is the Lagrangian function. Finally, if the following second-order sufficient condition
holds,

min
||u||=1,∇xg(x̃∗(ω),ω)u=0

uT∇2
xxL(x̃∗(ω), λ̃∗(ω), ω)u > 0, ∀ω ∈ Ω

then x̃∗(ω) is a locally unique solution of (O), and it is a smooth mapping of ω [4].
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3.3.2. Significance of Assumption [A5]. All the assumptions invoked here
are standard fare except for [A5]. Note that it is immediate, from [A3] and from the
fact that Ω is compact, that we have that CG < ∞. In addition, we have from the
definition of the Euclidean norm and (3.5) that

∣
∣
∣
∣JK,Q

∣
∣
∣
∣ = sup

ui ∈ R
n,

i = 0, 1, . . . , K
∑K

i=0 ||λi||2 = 1

sup
λj ∈ R

p,

j − K = 1, 2, . . . , Q
∑K+Q

j=K+1 ||uj||2 = 1








u0

u1

...
uK








T

JKQ








λK+1

λK+2

...
λK+Q








.

Examining the last expression and the definition of the blocks Ji,j of JK,Q, we obtain
that








u0

u1

...
uK








T

JKQ








λK+1

λK+2

...
λK+Q








=

i=K,j=K+Q
∑

i=0,j=K+1

〈
uT

i Pi(ω)G†(ω)Pj(ω)λj

〉
=

〈(
K∑

i=0

uT
i Pi(ω)

)

G†(ω)





K+Q
∑

j=K+1

Pj(ω)λj





〉
triangle ineq.

≤

〈

||û(ω)||
∣
∣
∣
∣G†(ω)

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣λ̂(ω)

∣
∣
∣

∣
∣
∣

〉 (3.6), Cauchy-Schwarz
≤

1

σm

||û(ω)||W
∣
∣
∣

∣
∣
∣λ̂(ω)

∣
∣
∣

∣
∣
∣
W

(2.1)
=

1

σm

,

where

û(ω) : Ω → R
n =

K∑

i=0

uiPi(ω), λ̂(ω) : Ω → R
p =

K+Q
∑

j=K+1

λjPj(ω).

In turn, this implies that

∣
∣
∣
∣JK,Q

∣
∣
∣
∣ ≤ 1

σm

, ∀K, Q ∈ N.

Tracking back the definition of c in Assumption [A5], we have that c ≤ 1
σm

.

On the other hand, requiring CG
1

σm
≤ 1

4 instead of cCG < 1
4 results in exceed-

ingly conservative bounds. For instance, if the constraint function does not depend
explicitly depend on ω and is linear in x, then it immediately follows that JK,Q = 0,
∀K, Q ∈ N and thus c = 0, even if 1

σm
> 0. A perturbation argument applied to

the same circumstance (the independence of ω situation) implies that the condition
cCG ≤ 1

4 is satisfied if the dependence of g on ω is sufficiently weak.
We conclude that [A5] is implied by sufficiently small variation of g with respect

to ω (a condition that is far weaker than assuming that 1
σm

is less than 1
4CG

).

3.4. Solvability and Convergence Results. Notation We use the notation
x̃∗,K(ω) = ΠK

W x̃∗(ω).
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Define now

GK
2 (λ, u) =

MK∑

i,j=0

λT
i

〈
Pi∇xg(x̃∗,K(ω), ω)Pj

〉
uj,

GK = inf
λi ∈ R

p,

i = 0, 1, . . . , MK
∑MK

i=0 ||λi||2 = 1

sup
uj ∈ R

n,

j = 0, 1, . . . , MK
∑MK

j=0 ||uj ||2 = 1

GK
2 (λ, u).

Lemma 3.3. Define ΓK = A0 − A1

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
∞ − A2

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
2

∞, where

A0 = 1 − 4c2C2
G, A1 = 8c2CGL, and A2 = 4c2L2 + 2

L2

σ2
m

. (3.7)

Then, if ΓK > 0, it follows that cσm < 1 and

GK ≥
√

4ΓK

1
σ2

m
− c2

.

Notation For simplicity, we use the notation x̃ = x̃∗ and x̃K = x̃∗,K .
Proof Define

ΘK =

{

λ̃(ω) =

MK∑

i=0

λiPi(ω)

∣
∣
∣
∣
∣
λi ∈ R

p, i = 0, 1, . . . , MK ,

MK∑

i=0

||λi||2 = 1

}

(3.8)

ΥK =

{

ũ(ω) =

MK∑

i=0

uiPi(ω)

∣
∣
∣
∣
∣
ui ∈ R

n, i = 0, 1, . . . , MK ,

MK∑

i=0

||ui||2 = 1

}

(3.9)

It immediately follows from (2.1) that λ̃ ∈ ΘK implies that
∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣
W

= 1, and

ũ ∈ ΥK implies that ||ũ(ω)||W = 1. We will use ũ and λ̃ as the functional image of
{λk}k=0,1,...,MK

, and, respectively, {uk}k=0,1,...,MK
. We have that

GK
2 (λ, u) =

〈

λ̃(ω)T∇xg(x̃K(ω), ω)ũ(ω)
〉

.

We define R
n

� enK = 1√
n(MK+1)

(1, 1, . . . , 1)
T

and

0 ≤ HK(λ̃) =

MK∑

i=0

∣
∣
∣

∣
∣
∣

〈

λ̃T (ω)∇xg(x̃K(ω), ω)Pi(ω)
〉∣
∣
∣

∣
∣
∣

2

. (3.10)

We now define

ui =

{
1√

HK(λ̃)

〈

λ̃T (ω)∇xg(x̃K(ω), ω)Pi(ω)
〉

HK(λ̃) 6= 0

enK HK(λ̃) = 0.
, i = 0, 1, . . . , MK

which results in ũ ∈ ΥK . With this choice we get that G(λ̃, ũ) =

√

HK(λ̃), and, using

the expression of GK , we obtain that

GK ≥ infλ̃∈ΘK

√

HK(λ̃).
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So we now proceed to bound below HK(λ̃).
From the definition of G†(ω), we have that

λ̃(ω)T = λ̃(ω)T∇xg(x̃(ω), ω)G†(ω), ∀ω ∈ Ω. (3.11)

Define

R
n

� θi(λ̃) =
〈

λ̃(ω)T∇xg(x̃K(ω), ω)Pi(ω)
〉

R
n×p

� µik(G†) =
〈
Pi(ω)G†(ω)Pk(ω)

〉
.

We now discuss the well-posedness of the preceding quantities. Since λ̃ is a polynomial
and, from assumptions [A3] and [A4] the function λ̃T (ω)∇xg(x̃K(ω), ω) is continuous

and Ω is compact, it follows that
∣
∣
∣

∣
∣
∣λ̃(ω)∇xg(x̃K(ω), ω)

∣
∣
∣

∣
∣
∣

2

W
< ∞. This, in turn, means

that θi(λ̃) is well defined (the integral that defines it is absolutely convergent), and

∑∞
i=0

∣
∣
∣

∣
∣
∣θi(λ̃)

∣
∣
∣

∣
∣
∣

2 (2.1)
=

∣
∣
∣

∣
∣
∣λ̃(ω)∇xg(x̃K(ω), ω)

∣
∣
∣

∣
∣
∣

2

W
=

〈∣
∣
∣

∣
∣
∣λ̃(ω)∇xg(x̃K(ω), ω)

∣
∣
∣

∣
∣
∣

2
〉

≤
〈∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣

2 ∣
∣
∣
∣∇xg(x̃K(ω), ω)

∣
∣
∣
∣
2
〉

≤
∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣

2

W

∣
∣
∣
∣∇xg(x̃K(ω), ω)

∣
∣
∣
∣
2

∞

=
∣
∣
∣
∣∇xg(x̃K(ω), ω)

∣
∣
∣
∣
2

∞ ≤
(
CG + L

∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
∞
)2

,

(3.12)

where the last inequality follows from
∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣

2

W
= 1 (since λ̃ ∈ ΘK), the triangle

inequality
∣
∣
∣
∣∇xg(x̃K(ω), ω)

∣
∣
∣
∣
∞ ≤ ||∇xg(x̃(ω), ω)||∞ +

∣
∣
∣
∣∇xg(x̃K(ω), ω) −∇xg(x̃(ω), ω)

∣
∣
∣
∣
∞

≤ CG + L
∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
∞ ,

and the notations from Assumption [A5].
From (3.11), using the extension of < h, l >W =

∑∞
i=0 ci(h)ci(l), that holds for

h, l ∈ L2
W , to matrix-valued mappings, we obtain that, for ∀k ≤ MK , we have that

〈

Pkλ̃(ω)T
〉

=

∞∑

i=1

〈

λ̃(ω)T∇xg(x̃(ω), ω)Pi(ω)
〉

µik(G†) =

∞∑

i=1

θi(λ̃)T µik(G†) +

〈

Pk(ω)λ̃(ω)T
(
∇xg(x̃(ω), ω) −∇xg(x̃K(ω), ω)

)
G†(ω)

〉

.

Since λ̃ ∈ ΘK and from the preceding equation, we have that

1 =

MK∑

k=0

∣
∣
∣

∣
∣
∣

〈

Pk, λ̃(ω)T
〉∣
∣
∣

∣
∣
∣

2

≤ 2

MK∑

k=0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=0

θi(λ̃)T µik(G†)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

+ 2T3 ≤ 4(T1 + T2) + 2T3,

(3.13)

where the last two inequalities follow from the inequality ||a + b||2 ≤ 2(||a||2 + ||b||2)
applied twice and from Bessel’s identity (2.1) where

T1 =

MK∑

k=0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

MK∑

i=0

θi(λ̃)T µik(G†)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

T2 =

MK∑

k=0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=MK+1

θi(λ̃)T µik(G†)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

T3 =

MK∑

k=0

∣
∣
∣

∣
∣
∣

〈

Pk(ω)λ̃(ω)T
(
∇xg(x̃(ω), ω) −∇xg(x̃K(ω), ω)

)
G†(ω)

〉∣
∣
∣

∣
∣
∣

2

.
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We now find upper bounds on T1, T2, and T3. We define θ̃(ω) =
∑MK

i=0 θi(λ̃)Pi(ω).
We obtain that

T1 =

MK∑

k=0

∣
∣
∣

∣
∣
∣

〈

θ̃(ω)T G†(ω)Pk

〉∣
∣
∣

∣
∣
∣

2 (2.1)

≤
〈∣
∣
∣

∣
∣
∣θ̃(ω)T G†(ω)

∣
∣
∣

∣
∣
∣

2
〉

≤
〈∣
∣
∣

∣
∣
∣θ̃(ω)

∣
∣
∣

∣
∣
∣

2 ∣
∣
∣
∣G†(ω)

∣
∣
∣
∣
2
〉

by (3.6)

≤ 1

σ2
m

〈∣
∣
∣

∣
∣
∣θ̃(ω)

∣
∣
∣

∣
∣
∣

2
〉

(2.1)
=

1

σ2
m

MK∑

k=0

∣
∣
∣

∣
∣
∣θk(λ̃)

∣
∣
∣

∣
∣
∣

2 (3.10)
=

HK(λ̃)

σ2
m

.

Using [A5], we obtain that

T2 ≤ c2
∞∑

k=MK+1

∣
∣
∣

∣
∣
∣θk(λ̃)

∣
∣
∣

∣
∣
∣

2

= c2
∞∑

k=0

∣
∣
∣

∣
∣
∣θk(λ̃)

∣
∣
∣

∣
∣
∣

2

− c2
MK∑

k=0

∣
∣
∣

∣
∣
∣θk(λ̃)

∣
∣
∣

∣
∣
∣

2

by (3.12), (3.10)

≤ c2
(
CG + L

∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
)2 − c2HK(λ̃).

Finally, using Bessel’s identity (2.1), Cauchy-Schwarz, [A5], and that
∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣
W

= 1,

which follows from λ̃ ∈ ΘK , we obtain that

T3

(2.1)

≤
∣
∣
∣

∣
∣
∣λ̃(ω)T

(
∇xg(x̃(ω), ω) −∇xg(x̃K(ω), ω)

)
G†(ω)

∣
∣
∣

∣
∣
∣

2

W

≤
〈∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣

2 ∣
∣
∣
∣
(
∇xg(x̃(ω), ω) −∇xg(x̃K(ω), ω)

)∣
∣
∣
∣
2 ∣
∣
∣
∣G†(ω)

∣
∣
∣
∣
2
〉

by [A5],(3.6)

≤
(

L

σm

)2
∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
2

∞ .

Replacing the bounds obtained for T1, T2, and T3 in (3.13), we obtain that

4HK(λ̃)

(
1

σ2
m

− c2

)

≥ ΓK = A0 − A1

∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
∞ − A2

∣
∣
∣
∣x̃ − x̃K

∣
∣
∣
∣
2

∞ ,

where A0, A1, A2 are defined in (3.7). Since ΓK > 0 implies that A0 > 0, which in
turn implies that cCG < 1

4 , we get, from [A1], that cσm < 1
4 . The conclusion follows

from the preceding displayed inequality. 2

A key point of our analysis consists of obtaining bounds between
∣
∣
∣
∣x̃K

∣
∣
∣
∣
∞ and

∣
∣
∣
∣x̃K

∣
∣
∣
∣
W

.
Lemma 3.4.

∣
∣
∣
∣x̃K

∣
∣
∣
∣
W

≤
∣
∣
∣
∣x̃K

∣
∣
∣
∣
∞ ≤ ΛK

∣
∣
∣
∣x̃K

∣
∣
∣
∣
W

Proof It is immediate that
∣
∣
∣
∣x̃K

∣
∣
∣
∣
W

≤
∣
∣
∣
∣x̃K

∣
∣
∣
∣
∞. We have, using Cauchy-Schwarz,

that

∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

MK∑

k=0

xkPk(ω)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤

MK∑

k=0

||xk|| |Pk(ω)| ≤

√
√
√
√

MK∑

k=0

||xk||2
√
√
√
√

MK∑

k=0

|Pk(ω)|2.

From the definition of ΛK , (2.4), we obtain that

sup
ω∈Ω

∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣ ≤ ΛK

∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣
W

,
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which proves the claim. 2

Lemma 3.5.

∣
∣
∣
∣JK (x̃1(ω)) − JK (x̃2(ω))

∣
∣
∣
∣ ≤ LΛK ||x̃1(ω) − x̃2(ω)||W

Notation We will denote x̃1 = x̃1(ω), x̃2 = x̃2(ω).
Proof By algebraic manipulations and notations similar to the ones in Lemma

3.3, we obtain that

∣
∣
∣
∣JK (x̃1) − JK (x̃2)

∣
∣
∣
∣ =

sup
λi ∈ R

p, uj ∈ R
n

i = 0, 1, . . . , MK
∑MK

i=0 ||λi||2 = 1
∑MK

j=0 ||uj ||2 = 1

MK∑

i,j=0

λT
i 〈Pi (∇xg(x̃1, ω) −∇xg(x̃2, ω))Pj〉uj =

sup
λ̃∈ΘK ,ũ∈ΥK

〈

λ̃(ω)T (∇xg(x̃1, ω) −∇xg(x̃2, ω)) ũ(ω)
〉 by [A5]

≤

L ||x̃2 − x̃1||∞ sup
λ̃∈ΘK ,ũ∈ΥK

〈∣
∣
∣

∣
∣
∣λ̃(ω)

∣
∣
∣

∣
∣
∣ ||ũ(ω)||

〉 Cauchy-Schwarz

≤ L ||x̃2 − x̃1||∞
by Lemma 3.4

≤

LΛK ||x̃2 − x̃1|| ,

which completes the claim. 2

Lemma 3.6. The objective function of the problem (SO(K)) has bounded level
sets.

Proof Take x̃K(ω) =
∑MK

k=0 xkPk(ω). Consider the level set of height M of

f̃K(x̃K) =
〈
f(x̃K(ω), ω)

〉
,

LK(M) =
{

(x0, x1, . . . , xMK
) ∈ R

mMK
∣
∣ f̃K (x̃) ≤ M

}

.

Using Assumption [A2], we obtain that, if (x0, x1, . . . , xMK
) ∈ LK(M), then

M > f̃
(
x̃K
)

=
〈
f
(
x̃K(ω), ω

)〉 [A2]

≥
〈

χ
(∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣
γ
)〉

by Jensen’s inequality

≥ χ
(〈∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣
γ
〉)

=⇒
〈∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣
γ
〉

∈ Lχ
M . (3.14)

We denote

L
γ
K = min

PMK
k=0

||xk||2=1

〈∣
∣
∣
∣x̃K(ω)

∣
∣
∣
∣
γ
〉

.

Since the unit ball BK ∈ R
n(MK+1), defined as

BK =

{

(x0, x1, . . . , xMK
) ∈ R

n(MK+1)
∣
∣
∣

MK∑

k=0

||xk||2 = 1

}

,

is a compact set, the quantity L
γ
K is well defined.
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It also immediately follows that L
γ
K > 0, ∀K > 0. Indeed, if there existed a K

for which L
γ
K = 0, it would follow that for some choice of x0, x1, . . . , xK , such that

∑MK

k=0 ||xk||2 = 1, we have that x̃K(ω) = 0, ∀ω ∈ Ω, which contradicts the fact that
Pk(ω) are linearly independent because they are a subset of a basis.

In return (3.14) results in χ
(

L
γ
K

(
∑MK

k=0 ||xk||2
))

≤ M , which, in turn, results in
(
∑MK

k=0 ||xk||2
)

≤ χ−1(M)
L

γ

K

. Since we assumed that the function χ has bounded level

sets, the conclusion follows. 2

Note Lemma 3.6 ensures that the solution of the systems of nonlinear equations
that defines the spectral spectral finite element method [15, 14] does exist, at least for
the case where the system of nonlinear equations is derived from the optimality con-
ditions of an unconstrained optimization problem. The same result can be obtained
for constrained problems from Lemma 3.3 for all K when g(x, ω) is linear in x and
does not depend on ω, since [A5] is satisfied with c = 0. To our knowledge, this is a
new result for the case where the the variation of x̃∗(ω) is not necessarily small.

Lemma 3.7. Assume that
(a) limK→∞

∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
∞ = 0 and

(b) that limK→∞ΛK
∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
W

= 0.

For any r > 0, there exists K0 such that (SO(K)) has a feasible point x̄K(ω) that
satisfies

∣
∣
∣
∣x̄K − ΠK

W x̃∗∣∣
∣
∣
W

≤ r, ∀K ≥ K0.
Proof We seek to apply Kantorovich’s Theorem 3.2. With the notations in the

assumptions [A2]–[A5], and from the definition of GK preceding Lemma 3.3 and from
the definition of ΛK (2.4), it follows, using Lemma 3.5, that the conditions of the
theorem are satisfied at x̃∗,K = ΠK

W (x̃∗) provided the following two conditions hold:

(i) h =
LΛK

(
GK
)2

gK

2
< 1, (ii′) ρ =

2H(h)

LΛKGK
< r,

where gK =

√
∑MK

k=0 ||〈g(x̃∗,K(ω), ω)Pk〉||2. Note that if h < 1
2 , we have that h ≤

H(h) ≤ 2h. Therefore a sufficient condition for the condition (ii) to hold is

(ii) 4GKgK < r.

We have that

(
gK
)2

=

MK∑

k=0

∣
∣
∣
∣
〈
g(x̃∗,K(ω), ω)Pk

〉∣
∣
∣
∣
2 (2.1)

≤
∣
∣
∣
∣g(x̃∗,K(ω), ω)

∣
∣
∣
∣
2

W
.

From Leibnitz-Newton and assumption [A3] we get

g(x̃∗,K(ω), ω) = g(x̃∗(ω), ω) +

∫ 1

0

∇xg(x̄(t, ω), ω)
(
x̃∗,K(ω) − x̃∗(ω)

)
dt,

where x̄(t, ω) = tx̃∗,K(ω) + (1 − t)x̃∗(ω). Since x̃∗(ω) is a solution of (O), for any
ω ∈ Ω, we get g(x̃∗(ω), ω) = 0, ∀ω ∈ Ω. Using Assumptions [A5], we obtain the
following

∣
∣
∣
∣g(x̃∗,K(ω), ω)

∣
∣
∣
∣ ≤

∣
∣
∣
∣x̃∗,K(ω) − x̃∗(ω)

∣
∣
∣
∣

∫ 1

0

(CG + L ||x̄(t, ω) − x̃∗(ω)||)dt

≤
(

CG +
L

2

∣
∣
∣
∣x̃∗,K(ω) − x̃∗(ω)

∣
∣
∣
∣

)
∣
∣
∣
∣x̃∗,K(ω) − x̃∗(ω)

∣
∣
∣
∣ .
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In turn, this implies that

gK ≤
∣
∣
∣
∣g(x̃∗,K(ω), ω)

∣
∣
∣
∣
W

≤
(

CG +
L

2

∣
∣
∣
∣x̃∗,K − x̃

∣
∣
∣
∣
∞

)
∣
∣
∣
∣x̃∗,K − x̃∗∣∣

∣
∣
W

. (3.15)

From assumption (a) of this theorem, we have that ∃K0 such that, ∀K ≥ K0,

L
∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
∞ ≤ CG, A1

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
∞ + A2

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
2

∞ ≤ A0

2
,

where A0, A1, and A2 are defined in (3.7). With the notations of Lemma 3.3, ΓK ≥
A0

2 , and thus from Assumption [A5], which ensures that A0 > 0, we get that GK ≥
A3

∆
=
√

2A0
1

σ2
m

−c
> 0. Therefore, for K ≥ K0 and from (i),(ii), and (3.15) we get that

the conditions of Kantorovich’s theorem 3.2 are satisfied provided that

2LA2
3CGΛK

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
W

≤ 1, 8A3CG

∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
W

≤ r.

From assumptions (a) and (b), it follows that these conditions are satisfied, by even-
tually choosing a larger K0, for all K ≥ K0. Therefore, Kantorovich’s theorem 3.2
applies to give the conclusion. The proof is complete. 2

Theorem 3.8. Assume that x̃∗(ω) is smooth (infinitely differentiable). Then
there exists K0 such that (SO(K)) has a solution, ∀K ≥ K0.

Proof The key of the proof is that we are able to choose q as large as necessary
in (2.2) for f = x̃∗. Choose q = t + m + 2. We obtain from (2.3) that

∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
∞ ≤ mCS

∞∑

k=MK+1+1

||ck(f)|| deg(Pk)t.

Since the number of polynomials of degree at most K is

(
m + K

m

)

[10] we obtain

from (2.2) and (2.1) that ||ck(f)|| ≤ CQ−q, and from the preceding displayed equation
and (2.3), that

∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
∞ ≤ mCCS

∞∑

Q=K+1

(
m + Q

m

)

Q−(t+m+2)Qt

≤ CCS

(m − 1)!

∞∑

Q=K+1

Q−2

(
m + Q

Q

)m
K→∞−→ 0

and thus

limK→∞
∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
∞ = 0. (3.16)

In addition, from (2.4) and (2.2) we obtain that

ΛK
∣
∣
∣
∣x̃∗ − ΠK

W x̃∗∣∣
∣
∣
W

≤ C
1

Kq

(
m + K

m

)d

≤ C
1

m!Kq−dm

(
m + K

K

)md

.

Therefore, if we choose q ≥ md + 1, we get that ΛK
∣
∣
∣
∣x̃∗ − x̃∗,K

∣
∣
∣
∣
W

K→∞−→ 0. From
(3.16), conditions (a) and (b) of Lemma 3.7 are satisfied. We apply Lemmas 3.7 and
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3.6 to obtain that problem (SO(K)) is feasible for K ≥ K0 and has bounded level sets
and thus has a solution [21]. The proof is complete. 2

Theorem 3.9. Let m = 1 and W (x) =
√

1 − x2
−1

(the Chebyshev polynomials
case). Then SO(K) has a solution for all K ≥ K0.

Proof From [A4], x̃∗(ω) is continuous and has bounded variation; therefore
∣
∣
∣
∣x̃∗(ω) − ΠK

W x̃∗(ω)
∣
∣
∣
∣
∞ → 0 as K → ∞ [18, Theorem 1]. Also, from [A4], (2.4),

and (2.2) we obtain that

ΛK
∣
∣
∣
∣x̃∗(ω) − ΠK

W x̃∗(ω)
∣
∣
∣
∣
W

≤ K
1
2 C

1

K

K→∞−→ 0.

Conditions (a) and (b) of Lemma 3.7 therefore are satisfied. Therefore Lemmas 3.7
and 3.6 apply to give that the problem (SO(K)) is feasible for K ≥ K0 and its objective
function has bounded level sets. Therefore (SO(K)) is solvable [21], and the proof is
complete. 2

Discussion Theorem 3.8 completely addresses the issue of solvability of (SO(K))
in the case of smooth solution functions, independent of the dimension of the problem.
The result for nonsmooth solution functions Theorem 3.9 is restrictive in terms of both
dimensions and polynomial type, and its extension is deferred to future research.

Finally, we approach the issue of limits of solutions of (SO(K)) for increasing K.
For convergence as K → ∞ we need to invoke stronger assumptions, that allow us to
guarantee the existence of convergent subsequences.

Theorem 3.10. Assume that the conditions of Theorem 3.8 are satisfied, that the
sequence of solutions of the problem (SO(K)) satisfies the Kuhn-Tucker conditions,
and that there exists a CX > 0 such that the solution and multiplier sequences (λK

k ,
xK

k ) satisfy

MK∑

k=0

∣
∣
∣
∣λK

k

∣
∣
∣
∣ deg(Pk)t < CX ;

MK∑

k=0

∣
∣
∣
∣xK

k

∣
∣
∣
∣ deg(Pk)t < CX ,

where t is the parameter from (2.3). Define λ̃K(ω) =
∑MK

k=0 λK
k Pk(ω) and x̃K(ω) =

∑MK

k=0 xKPk(ω). Then the sequence (x̃K(ω), λ̃K(ω)) has a uniformly convergent sub-

sequence. Any limit (x̂(ω), λ̂(ω)) of such a subsequence satisfies the nonlinear system
of equations (3.1).

Proof From (2.3) it follows that the sequence (λ̃K(ω), x̃K(ω)) satisfies

∀ω1, ω2 ∈ Ω







∣
∣
∣

∣
∣
∣λ̃K(ω1)

∣
∣
∣

∣
∣
∣ ,
∣
∣
∣
∣x̃K(ω1)

∣
∣
∣
∣ ≤ CSCX ,

∣
∣
∣

∣
∣
∣λ̃K(ω1) − λ̃K(ω2)

∣
∣
∣

∣
∣
∣ ,
∣
∣
∣
∣x̃K(ω1) − x̃K(ω2)

∣
∣
∣
∣ ≤ CSCX ||ω1 − ω2|| .

Therefore the families λ̃K(ω), x̃K(ω) are equicontinuous and equibounded. We can
apply the Arzela-Ascoli theorem [16, Theorem 6.41] to determine that there exists a

uniformly convergent subsequence, x̃Kl , λ̃Kl with a corresponding limit pair. Let (x̂, λ̂)
be such a limit function pair, which must also be continuous because the convergence
of the subsequence of Lipschitz functions is continuous. Using Theorem (3.1), we get
that x̃Kl , λ̃Kl satisfies the equation (3.2), for l ≥ 0. Using assumptions [A3] and [A4],
we can take the limit in that equation and obtain that

〈

Pk(ω)

(

∇xf(x̂(ω), ω) +
(

λ̂(ω)
)T

∇xg(x̂(ω), ω)

)〉

= 0n, k ≥ 0,

〈Pk(ω)g(x̂(ω), ω)〉 = 0p, k ≥ 0.



18 M. Anitescu

From Bessel’s identity (2.1), we get that
∣
∣
∣

∣
∣
∣

(

∇xf(x̂(ω), ω) + λ̂(ω)T∇xg(x̂(ω), ω)
)∣
∣
∣

∣
∣
∣

2

W
+ ||g(x̂(ω), ω)||2W = 0,

which, in turn, proves our claim. The proof is complete. 2

Discussion Of course, it would be important to prove the convergence of the ap-
proximating sequences x̃K(ω) and λ̃K(ω) without assuming that they exhibit sufficient
smoothness in the limit. For this initial investigation, we provide this limited result,
and we defer the issue of extending it to further research. A promising approach seems
to be to quantify the uniform validity with ω of the second order sufficient conditions
for problem (O) and infer the smoothness in the limit from it.

4. Applications and Numerical Examples. Motivating our investigation was
the study of parametric eigenvalue problems as they appear in neutron diffusion prob-
lems in nuclear reactor criticality analysis [9]. We thus investigate how our develop-
ments apply to eigenvalue problems.

4.1. Parametric Eigenvalue Problems. In the following, we study our for-
mulation for two parametric eigenvalue problems, of sizes n = 2 and n = 1000. In the
formulation of the problem for both cases is (Q + ωDQ)x (ω) = λ (ω)x (ω) , where Q

and DQ are matrices of size n, λ (ω) and x (ω) are the smallest eigenvalue and the
corresponding eigenvector of the matrix (Q + ωDQ). Our theory is applied via the

interpretation of the problem as x (ω) = argminx(ω)T x(ω)=1 x (ω)
T

(Q + ωDQ)x (ω),

where λ (ω) is the Lagrange multiplier of the constraint, all for a fixed value of ω.
Here, ω ∈ [−1, 1], and the spectral finite element problem is constructed by using
either Legendre or Chebyshev polynomials [10].

As in our theoretical developments, the problem to be solved has n × (MK + 1)
unknowns and MK + 1 constraints, and, with the notation ΦK = {0, 1, . . . , MK}, can
be stated as

min{xi}i∈ΦK

〈(
∑MK

i=0 xiPi (ω)
)T

(Q + ωDQ)
(
∑MK

i=0 xiPi (ω)
)〉

s.t.∀k ∈ ΦK
〈(
∑MK

i=0 xiPi (ω)
)T (∑MK

i=0 xiPi (ω)
)

Pk (ω)

〉

= 〈Pk (ω)〉.

The problem is set up by computing the terms involved after breaking up the parenthe-
ses, computing the terms 〈ωPi (ω)Pj (ω)〉 = Li,j and 〈Pi (ω)Pj (ω)Pk (ω)〉 = L̂i,j,k.
This procedure was carried out by numerical quadrature in MATLAB, after which,
the resulting problem became

min
MK∑

i=0

xiQxi +
MK∑

i,j=0

LijxiDQxj

s.t.
MK∑

i,j=0

L̂ijkxixj = Eω [Pk (ω)] k = 0, 1, . . . , MK .

The problem was coded in AMPL [12] and solved by using the KNITRO interior-point
solver [25] which was started with x0 a vector with all entries 1√

N
, and xi = 0n, for

i = 0, 1, 2, . . . , MK . Once the problem was solved, the parametric approximation of

the solution and of the multiplier were constructed as x̃ (ω) =
MK∑

i=0

xkPk (ω), λ (ω) =

MK∑

i=0

λkPk (ω).
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It is immediate that the problem satisfies assumptions [A1] and [A3]. Assumption
[A2] is satisfied only if the resulting matrix is positive definite for any value of ω, which
can be ensured if one adds a suitable fixed multiple of the identity to the matrix. In
that case [A2] is satisfied with γ = 1 and χ(r) = r2. Since the effect of that is only
to shift the λ values, we can assume without loss of generality that [A2] is satisfied.
Assumption [A4] holds for both examples and can be verified once the solution is
computed. Assumption [A5] is a difficult assumption to verify numerically and, like
any small variation assumptions, is bound to be too conservative.

4.2. Problems with Inequality Constraints. It is well known that we can
transform an inequality constraint g1(x, ω) ≤ 0 into an equality constraint by using
a slack s1 and representing the inequality as g1(x, ω) + s2

1 = 0 [2]. The resulting
problem can be represented as (O), and our approach can be used to solve it. To
generate the problem (SO(K)), we use a parameterization for the slacks s1(ω) =
∑K

k=0 Pk(ω)s1,k. When we enforce the constraints of (SO(K)), we get expressions
similar to the constraints of the eigenvalue problem in the preceding section, which
means that the effect of s1 on the constraints can be represented finitely in the spectral
basis. Therefore, if the functions of the inequality constraints can be represented
finitely in the spectral basis, the introduction of slacks will not destroy that. This
means our approach and Theorem 3.1 applies to inequality constraints as well, once
we have formulated them as slacks. Theorem 3.8 cannot be expected to apply because
the solution x̃∗(ω) is not smooth in general when inequality constraints are present.
Theorem 3.9 may apply but it is limited to the case m = 1. For the convergence
analysis of problems with inequality constraints, further analysis is necessary.

4.3. The n = 2 Problem. For this problem, we chose Q =

[
2 1
1 2

]

, DQ =
[

1 0.4
0.4 0.2

]

, and we use only Legendre polynomials. We have computed the mini-

mum eigenvalue and the corresponding eigenvector as a function of the parameter ω,
both by solving the eigenvalue problem at 100 equally spaced points in the interval
between minus 1 and 1, and by using our constrained optimization formulation the
spectral finite element method. The results of the two approaches have been plotted in
Figure 4.1 for the angle between the eigenvectors obtained by the two approaches and
in Figure 4.2 for the eigenvalue. We call here, in Figures 4.1-4.2, and subsequently,
the first approach simulation and the second approach “SFEM”. It can be seen that
the error for the cosine of the angle between eigenvalues is in the seventh decimal
place, and the eigenvalue results are virtually indistinguishable. Note that the size of
the variation for which we were computing the eigenvector reaches half the size of the
maximum element in the original matrix, so the variation is far from being considered
small. The results show the soundness of our approach and provide good evidence
for convergence. In addition, the solution of the problem seems to be smooth, so the
conditions for both Theorems 3.8 and 3.10, as well as their conclusions, appear to
be satisfied. In this case the calculation was done with Legendre polynomials with
the degree at most 4. Therefore, in terms of the notation that we have used in the
theoretical sections, we have that K = 4 and MK = 4.
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Fig. 4.4. CPU times for the 100 n = 1000
eigenvalue calculations by ω value.

4.4. The n = 1000 Problem. For this problem, we chose

Qi,j =







1 i = j = 1
1 i = j = n

−1 |i − j| = 1
2 1 < i = j < n

0 otherwise

, DQ i,j =

{
2 i

n
n−i
n

cos
(

i
n

)
i = j

0 otherwise
.

This problem mimics a one-dimensional criticality analysis of the neutron flux in a
nuclear reactor [9]. Again, we computed a minimum eigenvalue and the corresponding
eigenvector as a function of the parameter ω both by solving the eigenvalue problem
at 100 equally spaced points in the interval between minus 1 and 1, as well as by
using our constrained optimization formulation of the spectral finite element method.
In this case the calculation was done with both Chebyshev and Legendre polynomials
with the degree at most 4. Therefore, in terms of the notation that we have used in
the theoretical sections, we have that K = 4 and MK = 4.

The results are displayed in the Figures 4.3-4.5 for the match between the eigen-
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values, as well as the angle between the eigenvectors. We see that the eigenvalues
match very well, with a relative error below 5% (with respect to the vector infinity
norm). The simulation was run on a Linux workstation, with an Intel XEON 2 GHz
CPU, with 512 KB of cache and 1 GB of RAM. Note, however, that the optimization
problem was solved in 9.17 seconds for the Legendre polynomials and 14.00 seconds
for the Chebyshev polynomials, whereas the direct calculation of the eigenvalue at
100 points took 1,595.10 seconds to compute on the same machine. We provide the
CPU times of the eigenvalue calculation at the 100 ω values in Figure 4.4.

The timings statement that we have used compare the result of a Matlab simula-
tion with compiled software, which may initially looks suspicious. Note, however, that
the objection that MATLAB is much slower for the simulation approach does not
apply here, since we have timed only the call to the eigenvalue function in MATLAB,
which is an external call to a compiled function.

A more substantial criticism of our comparison may be that we used the eig func-
tion, which computes all eigenvalues as opposed to only the minimal one at the 100
sample points, which is what is truly needed. One could wonder whether we do not
actually waste too much computation because of that. There exist algorithms that de-
termine only the minimum eigenvalue by some iterative procedure [26]. To investigate
such an alternative, we have used the eigs Matlab function, which uses an Arnoldi
iteration, to compute the minimun eigenvalue for ω = 0. The Matlab eigs function
is an interface to the large-scale eigenvalue package ARPACK [20]. After more than
300 Arnoldi iterations using the sparse form of the matrix and 60 CPU seconds, the
algorithm did not converge. At least in the realm of the options immediately available
to us, it is not clear how to take advantage of the fact that we need to compute only
one eigenvalue in a way that will be faster than the QR algorithm implemented by
eig. Another possibility, arising from our numerical results, is that for the problem
with n = 1000 it may be more efficient to solve the optimization problem for fixed
ω by applying KNITRO to the minimization formulation of the eigenvalue problem.
This is an intriguing possibility, given the absence in the literature, to our knowledge,
of any investigation in the direction of using projected CG, the algoritm implemented
by KNITRO, for determining the minimum eigenvalue. We plan to explore it fully in
future research.

Arguably, choosing 100 sample points at which to compute the minimal eigenvalue
is somewhat artificial. This choice was based on our experience in selecting the num-
ber of points needed to represent the eigenvalue graph (Figure 4.3) with an acceptable
precision. A perhaps fairer comparison would have been the amount of time needed to
produce an approximation of the eigenvalue mapping with the same level of accuracy
with our approach and with the direct simulation approach. Of course, once we did
that, we would have to specify the interpolation procedure that we use to construct the
approximating graph from the sampled values, which is again dependent on various
choices beyond the number of samples ( such as interpolation used and the choice of the
sampling points). We do carry out such a comparison when we compare below the out-
come insofar as eigenvectors. On the other hand, from Figure 4.4 one eigenvalue calcu-
lation is still far more expensive than the amount of time it took KNITRO to find the
solution to the problem SO(K), so our technique would still be quicker by more than
a factor of 5 in that case. In any event, we have made available at the publication web-
site of the author, http://www.mcs.anl.gov/˜anitescu/PUBLICATIONS/reports.html,
all the scripts and logs of our simulations, for the reader interested in experimenting
with these issues.
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In fairness, we do not expect such a striking disparity between competing times
to hold in general. Experience with the spectral nonlinear equations formulation does
suggest, however, that the effort needed in solving the problem SO(K), a problem
that has MK + 1 times larger variable space compared to the original problem (O)
for one choice of the parameter ω, is far less than solving the problem O for MK + 1
values of the parameter ω [15, 14]. Because SO(K) has, as shown by Theorem 3.1, the
same solution space as its nonlinear equation formulation in the case when the original
problem arises from the extremality conditions of a parametric optimization problem,
such an inference is warranted. Whether this expectation, which was justified by our
results, indeed extends to much larger problems will be the subject of future research.

At a first glance to the left panel of Figure 4.5, our approach did much worse in
calculating the behavior of the eigenvector, in effect, the variable of our optimization
problem. The figure seems to show errors in the cosine as large as 60%. A deeper
investigation revealed that the cusps in the figure have to do with the degeneracy of
the eigenvalue problem at those ω values. Indeed, if instead we are evaluating the

residual error
∥
∥
∥(Q + ωDQ) x̃ (ω) − λ̃ (ω) x̃ (ω)

∥
∥
∥, we see in the right panel of Figure

4.5 that that residual is always below 0.035 and 97% of the time below 0.02 for the
Legendre case and is always below 0.025 for the Chebyshev case. By comparison, if
one would compute the exact minimum eigenvalue at the points minus 1, 1 and at
the coordinates of the three cusps and used a linear interpolation with these nodes
and the minimum eigenvectors obtained by simulation (denoted by the “Black box” in
Figure 4.5) we see that the error would actually be quite a bit worse, by about a factor
of two, and on average by a factor of four. The procedure described is essentially the
one of collocation [29] with a piecewise linear basis function. Note that the number of
basis functions associated with the interpolation procedure described is 5, the same as
the number of basis functions considered by our SFEM approach that has generated
the results considered here.

Clearly, our choice of collocation points is probably close to the worst-case one
for collocation. On the other hand, one has very little a priori information on how
to choose these points, and the distribution chosen is far from being pathological,
judging from how well it covers the [−1, 1] interval (for example, in terms of the dis-
crepancy [24]). While such comparisons must be carried out on much larger classes
of problems, we find here evidence that the optimization based SFEM approach may
be much more robust than black-box algorithms, at least for parametric eigenvalue
problems. We call a “black-box” algorithm for parametric analysis a non-intrusive
algorithm that uses only input-output information of the non-parametric problem (in
our example, an eigenvalue solver), in order to generate the parametric approxima-
tion. Such algorithms are perhaps the easiest to implement for parametric analysis
and uncertainty quantification [11]. Our example shows that such algorithms may
encounter difficulties for a small dimension of the parameter space for problems of
the type presented here, in addition to the well-documented difficulties for a large
dimension of a parameter space [11].

Concerning the validation of the theoretical results, we note that the conditions
of Theorem 3.9 are satisfied for the Chebyshev polynomials case, though the Legendre
polynomials also seems to provide good approximating properties. The latter is rele-
vant since the Legendre polynomials are the choice in the widespread case of uniform
distribution.

5. Conclusions. We have shown that, in the study of the parametric depen-
dence of problems that originate in optimization problems, the spectral finite element
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Fig. 4.5. The case n = 1000: eigenvector angle and residual.

(SFEM) method can be formulated as an optimization problem. The major advan-
tage of our approach is that the resulting nonlinear problem has a solution that can
be found by optimization algorithms.

The formulation will include constraints if the original problem had any, and the
spectral finite element approximation to the parametric dependence of the Lagrange
multipliers is obtained implicitly from the solution, rather than explicitly as one would
expect from the typical spectral finite element formulation. We have shown that,
under certain assumptions, the SFEM problem is well-posed and that the sequence of
SFEM approximations of increasing degree converges to a solution of the parametric
problem. In particular, if the constraints are linear, a solution of the SFEM approach
exists without a small variation assumption of the solution x̃∗(ω) of the parametric
problem (O).

We note that our approach is applicable to the most computationally intensive
part of spectral stochastic finite-element methods [15], in the case where parametric
nonlinear equations represent the optimality conditions of a parametric optimization
problem. That is, our work presents and analyzes a method for computing the para-
metric solution map.

In the case where our approach is used for studying the parametric dependence
of the solution of minimum eigenvalue problems, we have shown that our method can
be orders of magnitude faster compared to the simulation-based exploration of the
parameter space. In addition, we have evidence that the method may be quite a bit
more accurate than worst-case choices of simulation based on black-box exploration
of the parameter space. The resulting problem is not convex, and it is difficult to
guarantee that the global minimum can be actually found by the software. Nonetheless
the software that we used KNITRO showed no difficulty in actually determining the
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minimum value.

Several issues remain to be analyzed. These include being able to guarantee
that the minimum found is actually a global minimum, determining efficient ways
of choosing the polynomial basis functions for a large number of dimensions of the
parameter space, efficiently solving the larger coupled optimization problem, showing
that the limit of solutions of (SO(K)) is sufficiently smooth rather than assuming it in
Theorem 3.10, and providing convergence results for inequality-constrained problems
and problems without smooth solutions.
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